书籍详情
《 Python深度学习原理、算法与案例》[91]百度网盘|亲测有效|pdf下载
  • Python深度学习原理、算法与案例

  • 出版社:清华大学出版社
  • 作者:邓立国、李剑锋、林庆发、邓淇文
  • 出版时间:2023-04-01
  • 热度:2351
  • 上架时间:2025-03-08 06:13:50
  • 价格:0.0
书籍下载
书籍预览
免责声明

本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正

内容介绍

编辑推荐

本书详解深度学习与机器学习基础、神经网络基础、卷积神经网络和循环神经网络、正则化与深度学习优化等内容,并剖析深度学习在计算机视觉、目标检测、文本分析、强化深度学习、TensorFlow模型、Transformer模型等方向的应用。
本书附录还给出机器学习和深度学习中用到的数学基础知识,包括线性代数、概率论和信息论等。
本书配套70个示例源码、PPT课件,所有示例源码都经过测试无误。

 
内容简介

本书涵盖深度学习的专业基础理论知识,包括深度学习概述、机器学习基础、神经网络基础、卷积神经网络、循环神经网络、正则化与深度学习优化,以及比较流行的应用场景实践。本书配套70个示例源码及PPT课件。
本书共11章外加3个附录,系统讲解深度学习的基础知识与领域应用实践。本书内容包括深度学习概述、机器学习基础、神经网络基础、卷积神经网络和循环神经网络、正则化与深度学习优化、计算机视觉应用、目标检测应用、文本分析应用、深度强化学习应用、TensorFlow模型应用、Transformer模型应用等。附录中还给出机器学习和深度学习中用到的数学基础知识,包括线性代数、概率论和信息论等。
本书适合Python深度学习初学者、深度学习算法开发人员学习,也适合作为高等院校计算机技术、人工智能、大数据相关专业的教材或教学参考书。

作者简介

邓立国,东北大学计算机应用博士,广东工业大学教师。主要研究方向为数据挖掘、知识工程、大数据处理、云计算、分布式计算等。著有图书《scikit-learn机器学习实战》《Python数据分析与挖掘实战》《Python大数据分析算法与实例》《Python机器学习算法与应用》《数据库原理与应用(SQL Server 2016版本)》。

 

目  录
第1章 深度学习概述 1
1.1 人工智能 1
1.2 机器学习 2
1.2.1 机器学习定义 2
1.2.2 机器学习流派 3
1.2.3 机器学习简史 6
1.2.4 机器学习流程 7
1.3 深度学习 9
1.4 深度学习的应用场景 10
1.4.1 技术类型 10
1.4.2 应用场景 11
1.5 本章小结 12
1.6 复习题 12
参考文献 13
前  言
深度学习(Deep Learning)是人工智能领域的一个概念,和传统的学习相比,深度学习强调学习的深度,揭示内部规律。深度学习是机器学习领域中一个新的研究方向,它被引入机器学习使其更接近初的目标—人工智能。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果远远超过先前的相关技术。
深度学习是一个多层神经网络,是一种机器学习方法。在深度学习出现之前,由于诸如局部解和梯度消失之类的技术问题,没有对具有4层或更多层的深度神经网络进行充分的训练,并且其性能也不佳。但是,近年来,Hinton等人通过研究多层神经网络,增强学习所需的计算机功能,以及通过Web的开发促进培训数据的采购,使充分学习成为可能。结果,深度学习显示出了高性能,压倒了其他方法,解决了与语音、图像和自然语言有关的问题,并在2010年开始流行。
作为人工智能重要的基础技术之一,近年来深度学习逐步延伸到更多的应用场景,如自动驾驶、互联网、安防、医疗等领域。随着深度学习模型越来越大,所需的数据量越来越多,所需的AI算力资源和训练时间越来越长,深度学习的训练和推理性能将是重中之重。

相关推荐