本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
内容简介 |
商品基本信息,请以下列介绍为准 | |
图书名称: | 《动手学深度学习》 |
作者: | 阿斯顿·张Aston Zhang 李沐Mu Li[美] 扎卡里·C. 立顿[德] 亚历山大·J. 斯莫拉 |
定价: | 85 |
ISBN号: | 9787115490841 |
出版社: | 人民邮电出版社 |
编辑** | |
目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。本书不仅从数学的角度阐述深度学习的技术与应用,还包含可运行的代码,为读者展示如何在实际中解决问题。为了给读者提供一种交互式的学习体验,本书不但提供免费的教学视频和讨论区,而且提供可运行的Jupyter记事本文件,充分利用Jupyter记事本能将文字、代码、公式和图像统一起来的优势。这样不仅直接将数学公式对应成实际代码,而且可以修改代码、观察结果并及时获取经验,从而带给读者**的、交互式的深度学习的学习体验。 本书面向希望了解深度学习,特别是对实际使用深度学习感兴趣的大学生、工程师和研究人员。本书不要求读者有任何深度学习或者机器学习的背景知识,读者只需具备基本的数学和编程知识,如基础的线性代数、微分、概率及Python编程知识。本书的附录中提供了书中涉及的主要数学知识,供读者参考。 本书的英文版Dive into Deep Learning是加州大学伯克利分校2019年春学期“Introduction to Deep Learning”(深度学习导论)课程的教材。截至2019年春学期,本书中的内容已被**15 所知名大学用于教学。本书的学习社区、免费教学资源(课件、教学视频、更多习题等),以及用于本书学习和教学的免费计算资源(仅限学生和老师)的申请方法在本书配套网站zh.d2l.ai上发布。读者在阅读本书的过程中,如果对书中某节内容有疑惑,也可以扫一扫书中对应的二维码寻求帮助。 |
内容简介 | |
本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以下载并运行的 Jupyter记事本,它将文字、公式、图像、代码和运行结果结合在了一起。此外,读者还可以访问并参与书中内容的讨论。 全书的内容分为3个部分:*部分介绍深度学习的背景,提供预备知识,并包括深度学习*基础的概念和技术;第二部分描述深度学习计算的重要组成部分,还解释近年来令深度学习在多个领域大获成功的卷积神经网络和循环神经网络;第三部分评价优化算法,检验影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程或附录中描述的线性代数、微分和概率基础。 |
目录 | |
对本书的赞誉 4.5 读取和存储 99 |
作者简介 | |
阿斯顿·张(Aston Zhang) 亚马逊应用科学家,美国伊利诺伊大学香槟分校计算机科学博士,统计学和计算机科学双硕士。他专注于机器学习的研究,并在数个**学术会议发表过论文。他担任过NeurIPS、ICML、KDD、WWW、WSDM、SIGIR、AAAI 等学术会议的程序委员或审稿人以及Frontiers in Big Data 期刊的编委。
李沐(Mu Li) 亚马逊首席科学家(Principal Scientist),加州大学伯克利分校客座助理教授,美国卡内基梅隆大学计算机系博士。他专注于分布式系统和机器学习算法的研究。他是深度学习框架MXNet 的作者之一。他曾任机器学习创业公司Marianas Labs 的CTO 和百度深度学习研究院的主任研发架构师。他在理论、机器学习、应用和操作系统等多个领域的**学术会议(包括FOCS、ICML、NeurIPS、AISTATS、CVPR、KDD 、WSDM、OSDI)上发表过论文。
亚历山大·J. 斯莫拉(Alexander J. Smola) |