本书详细解析了RAG(Retrieval-Augmented Generation,检索增强生成)技术及其应用,从文档的分块与向量化,到利用深度学习模型进行向量检索,再到结合Prompt技术以实现精准响应,每个知识点都有清晰的逻辑阐述与实践案例;同时,介绍了PyTorch编程基础与深度学习核心概念。此外,本书还涵盖了一系列实用技术,如Web可视化工具Streamlit与Gradio的使用,以及如何利用这些工具快速构建交互式界面,直观展示RAG技术的效果。最后,通过动手实现PDF阅读器的实例,读者能亲自体验从理论到实践的过程,加深对RAG技术的理解与掌握。
本书内容通俗易懂,适合对文档搜索和RAG应用感兴趣的读者阅读,也可以作为从事大语言模型相关工作的人员的参考书。