内容简介
互联网上信息庞杂,信息生产者很难将合适的信息传送至合适的用户,同时用户也很难从海量信息中获取其感兴趣的内容。推荐系统能够将信息生产者和用户链接起来,帮助平台解决需求和资源匹配的难题。本书覆盖推荐系统在行业应用中涉及的召回算法、排序算法的原理和实现思路,以及特征工程、冷启动、效果评估、A/B测试、Web服务等核心工程知识,并包含金融、零售等行业的实施案例,另外也与时俱进地介绍了大模型及其在推荐系统中的应用。
本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
1. 深入算法工程本质,手把手实操项目代码
2. 达观数据真实行业案例,呈现 B 端高频规则和策略
3. 大模型时代下的推荐系统,洞悉推荐系统未来发展趋势
互联网上信息庞杂,信息生产者很难将合适的信息传送至合适的用户,同时用户也很难从海量信息中获取其感兴趣的内容。推荐系统能够将信息生产者和用户链接起来,帮助平台解决需求和资源匹配的难题。本书覆盖推荐系统在行业应用中涉及的召回算法、排序算法的原理和实现思路,以及特征工程、冷启动、效果评估、A/B测试、Web服务等核心工程知识,并包含金融、零售等行业的实施案例,另外也与时俱进地介绍了大模型及其在推荐系统中的应用。