书籍详情
《 机器学习的算法分析和实践》[72]百度网盘|亲测有效|pdf下载
  • 机器学习的算法分析和实践

  • 出版社:清华大学出版社
  • 作者:孙健
  • 出版时间:2023-10-29
  • 热度:2648
  • 上架时间:2025-03-08 06:13:50
  • 价格:0.0
书籍下载
书籍预览
免责声明

本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正

内容介绍

产品特色

编辑推荐

本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。

 
内容简介

本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。 机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。 机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最快捷的办法还是带着机器学习的具体问题来掌握背后的数学原理。因为线性代数和概率理论使用较多,本书在最后两章集中把重要的一些概率论和线性代数的内容加以介绍,如果有需要的同学可以参考。另外,学习任何知识,动手练习加深理解的**方法,所以本书的每一章都配备了习题供大家实践和练习。

作者简介

复旦大学数学学院教授、 金融研究院量化中心主任。北京大学数学系毕业, 2000年美国芝加哥大学博士毕业。曾担任摩根士丹利固定收益部执行总经理,从事股票类、固定收益类、大宗商品类等衍生品的定价、交易和风险对冲工作。某量化私募基金管理公司创始人和投委会主席。

目  录
第 1章引论 .1
习题 . 10
习题 . 21
习题 . 30
习题 . 35
习题 . 80
习题 . 85
10.4 No Free Lunch定理 . 95
习题 . 104
习题 . 114
习题 . 127
习题 . 138
习题 . 149
第 16章概率论基础 . 150
前  言

以机器学习为核心的人工智能已经渗入人们生活和工作中的各个部分,不但在传统的计算机领域产生了影响,而且正在经济和金融方面产生深远的影响。本书正是笔者在复旦大学经济学院开设的“机器学习”课程中编写的讲义。
很多高校都开设了“机器学习”课程,有些教师把重点放在了代码上,在课程中逐行教学生如何调取函数库中的机器学习代码。而笔者在教学中发现代码虽然重要,但更为重要的是解释清楚机器学习代码背后的算法。一旦从算法上掌握了机器学习,理解代码相对就变得简单和容易了。
笔者编写本书的初衷就是试图用最精炼的篇幅为读者介绍机器学习算法。机器学习可以分成三大类别,即监督式学习、非监督式学习和强化学习。三大类别背后的数学原理各有不同。监督式学习使用了数学分析中的函数逼近方法和概率统计中的极大似然方法;非监督式学习使用了聚类和 EM算法;强化学习使用了马尔可夫决策过程的想法。这些方法都比较明确地体现在本书中。

相关推荐