书籍详情
《 机器学习及其硬件实现 [日]高野茂之》[96]百度网盘|亲测有效|pdf下载
  • 机器学习及其硬件实现 [日]高野茂之

  • 出版社:机械工业出版社
  • 作者:[日]高野茂之
  • 出版时间:2023-12-20
  • 热度:2724
  • 上架时间:2025-03-08 06:13:50
  • 价格:0.0
书籍下载
书籍预览
免责声明

本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正

内容介绍

产品特色

编辑推荐

1. 涵盖多种机器学习硬件和平台,以及各类机器学习硬件加速器解决方案,读者可根据需要将这些解决方案应用于合适的机器学习算法。2. 对现有研究成果和产品进行回顾,分析不同的机器学习模型,并通过FPGA和ASIC方法解释目标机器学习模型的设计。3. 对硬件设计的未来方向进行展望,涉及传统微处理器、GPU、FPGA和ASIC等,帮助读者了解现代研究趋势,进而实现自己的设计。

 
内容简介

本书主要讨论机器学习、神经形态计算和神经网络的理论及应用,专注于机器学习加速器和硬件开发。本书从传统的微处理架构发展历程入手,介绍在后摩尔定律和后丹纳德微缩定律下,新型架构的发展趋势和影响执行性能的各类衡量指标。然后从应用领域、ASIC和特定领域架构三个角度展示了设计特定的硬件实现所需考虑的诸多因素。接着结合机器学习开发过程及其性能提升方法(如模型压缩、编码、近似、优化等)介绍硬件实现的细节。zui后给出机器学习硬件实现的大量案例,展示机器如何获得思维能力。本书适合有一定机器学习基础并希望了解更多技术发展趋势的读者阅读。

作者简介

Shigeyuki Takano,目前在一家顶尖的汽车公司担任工程师,从事深度学习处理器的开发。曾在三洋半导体(Sanyo Semiconductor)公司从事数字信号处理器的开发;还曾任职于多玩国(Dowango)公司,从事硬件视频转码器原型的开发和实现。此外,他正在庆应义塾大攻读计算机工程博士学位,研究领域为处理器体系结构,特别是针对领域特定的体系结构。

目  录
CONTENTS
目  录

译者序
前言
第1章 简介 1
1.1 机器学习的曙光 1
1.1.1 “Jeopardy!”中的IBM Watson
挑战 1
1.1.2 ImageNet挑战 2
1.1.3 谷歌AlphaGo挑战职业
围棋选手 2
1.2 机器学习及其应用 3
1.2.1 定义 3
前  言
PREFACE
前  言
2012年,机器学习被应用于图像识别,并提供了很高的推理准确性。此外,还开发了一个机器学习系统,可以在国际象棋和围棋游戏中挑战人类专家,并成功地击败了世界级的专业人士。半导体技术的进步提高了完成深度学习任务所需的执行性能和数据存储容量。不仅如此,互联网还提供了大量的数据,可以被应用于神经网络模型的训练。研究环境的改善为机器学习领域带来了突破性进展。

相关推荐